Mark schemes

Q1.

(a) $\lambda = 2 \times 0.648$

Allow 1296 (mm) or 1.296 (m) or 129.6 (cm) seen.

OR

Use of $v = f \lambda \checkmark$

Condone **one error** in their substitution where λ and f have been substituted and v would be the subject:

Allow

(v=) 0.648 x 147 (forgets to double L)

OR

$$(v=)\frac{0.648}{2} \times 147 \text{ (halves } L)$$

Do not allow:

(v=) 648 x 147 (POT error **and** forgets to double L)

NOR

$$(v=)\frac{648}{2} \times 147$$
 (POT error and halves L)

 $(v =) 191 (m s^{-1}) \checkmark$

Calculator display= 190.512 190 (ms⁻¹) correct to 2 sf

(b) Use of $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$

OR

Use of
$$V = \sqrt{\frac{T}{\mu}}$$

OR

Condone **one error** where f, I and T have been substituted.

OR

 μ would be subject of a correctly rearranged expression $\frac{(\mu^{=})^{\frac{T}{4l^2f^2}}}{}$

 $(\mu=)$ 1.956 × 10⁻³ (kg m⁻¹) \checkmark

Their I:

must be seen in MP1:

or

condone a POT error (if already penalised in **MP1** or part (a))

Use of

m = their $\mu \times their I \checkmark$

allow ecf from part (a) where $v = \sqrt{\frac{T}{\mu}}$ seen

MP1
$$\mu = \frac{T}{v^2}$$
 or $\mu = 71$ / answer to part (a)

MP2 (m=) their ecf $\mu \times 0.648$

MP3 ecf answer

$$(m =) 1.3 \times 10^{-3} \text{ (kg) } \checkmark$$

Calculator display= $1.267618831 \times 10^{-3}$ (kg)

[5]

3

1

Q2.

(a) between s = 7.5 m and s = 15 m \checkmark Tick in 2nd box only

(b) Use of $\Delta E_P = mgh \checkmark$

Use of: rearrangement where m would be subject or substitution.

Condone one error in substitution.

$$(m =)65(.0) (kg) \checkmark$$

Calculator display =

For $g = 9.81 \text{ ms}^{-2} = 64.96772001$

For $g = 9.8 \text{ ms}^{-2} = 65.0340136054421$

Alternative method for an ECF from **part (a)** (tick in 3rd or 4th boxes).

• Use of $E_k = \frac{1}{2}mv^2$

OR

Read-off for $v = 15.4 \text{ ms}^{-1}$ (Acceptable range 15.2 ms^{-1} to 15.6 ms^{-1})

• m = 80.6 (kg)

(Acceptable range 78.57 kg to 82.76 kg)

(c) Max 2 from: ✓✓

• Energy difference (*E*) = 9.56 - 7.71 = 1.85 (kJ) ✓

Accept correct energy conservation statement for **MP1**

For example:

 $\Delta E_P = E_K + \text{energy stored (in rope)}$

• Use of
$$E = \frac{1}{2}k\Delta L^2$$

Use of:

Rearrangement to make ΔL the subject or by substitution.

Condone use of their E and **one other error** in substitution. (allow 9.56 (kJ) or 7.71(kJ) for E)

Condone use of

$$E = \frac{1}{2}F\Delta L$$
 and $F = k\Delta L$ OR $E = \frac{1}{2}F\Delta L$ and $F = mg$

With their F and their E seen in $E = \frac{1}{2}F\Delta L$

$$\Delta L = \sqrt{\frac{2 \times \text{their energy difference}}{k}}$$

Must be an energy difference. Condone POT Do not accept 9.56 (kJ) or 7.71(kJ) for their energy difference.

$$\Delta L = 5.8(0) \text{ m } \checkmark$$

Max 1 mark for:

 $637.65 = 110 \times \Delta L \text{ giving } \Delta L = 5.8 \text{ m}$

must be done by considering energy transfers.

OR

answer without working.

Q3.

- (a) calculates, using all 4 values, a mean of 0.418 (s) ✓

 Expect to see 25.08 (mean average) divided by 60, or 100.32 (sum) divided by 240 in working
- (b) 2.75 cycles (between **P** and **Q**) ₁√

$$T_{PQ} = 0.42 \times \text{their number of cycles }_2 \checkmark$$

$$Expect \ T_{PQ} = 1.15, \ 1.16 \ \text{or} \ 1.2 \ \text{(s)}$$

$$_2 \checkmark \text{Allow use of >2 sf } T_{PQ} \text{ that rounds to } 0.42 \ \text{(s)}$$

$$_2 \checkmark \text{Their number of cycles must be between } 2.5$$
and 3

(c) 0.170 (m) ✓

Condone 2 sf value on answer line if working shows a 3 sf value or "170 mm" seen or "20 mm" used e.g. '8.5 × 20 mm'.

(d) correct use of an appropriate equation of motion ₁√

correct evaluation of their a 2√

Expect to see a = 0.24, 0.25 or 0.26 ($m \, s^{-2}$) $a = \frac{2 \times \text{their } s}{\text{their } (T_{PQ})^2} \text{ OR}$ $v = \frac{\text{their } s}{\text{their } T_{PQ}} \text{ AND} \qquad a = \frac{2 \times \text{their mean } v}{\text{their } T_{PQ}}$ Expect mean v = 0.14 or 0.15 ($m \, s^{-1}$)

₁ ✓ Allow s in mm

[6]

2

2

Q4.

(a) value in range 2.9 × 10⁴ to 3.0 × 10⁴ (N) ✓

Use of data from any point (plotted or using their

line or using their B for brass) is acceptable

(b) smooth curve through at least 4 saltires _{1a}√

1a ✓ Reject thick or discontinuous lines

_{1a} ✓ can be awarded if no credit gained in _{1b} ✓ or _{2b} ✓

correct read off at 1.60 mm, leading to answer in range 58 to 64 (kg mm⁻²)

2a ✓ 2 or 3 sf values only

OR

use of use of
$$B = \frac{their F}{\pi \times g \times 10 \times 1.6}$$
 _{1b} \checkmark

_{1b} ✓ Condone use of D and h in metres if also seen (and penalised) in **part (a)**

consistent calculation of B 2b√

_{2b} ✓ 2 or 3 sf values only

2b ✓ Their B should be 493

2

Q5.

(a) use of
$$\rho = \frac{m}{V}$$
 AND $V = AI_1 \checkmark$

$$260 \text{ (m) } 2\checkmark$$

$$1\checkmark \text{Expect to see } V = 2.5 \text{ } m^3 \text{ or total } V = 5.0 \text{ } m^3$$

(b) calculates total tension of 3.2 × 10⁶ N ₁√

F = T - W seen **OR** subtracts a weight from tension ₂ \checkmark

uses F = ma ₃✓

0.28 or 0.29 (m s⁻²) 4

Expected values seen:

Total mass = 3.17×10^5 kg

Load weight = 2.75×10^6 N

Cable weight = 3.63×10^5 N

Total weight = 3.11×10^6 N

Resultant force = 9.02×10^4 N $_4\checkmark$ Calculator values are: 0.28464 (using g = 9.81)
and 0.29464 (using g = 9.8)

[6]

1

Q6.

(a)
$$n = 43.1 \checkmark (\ge 2 \text{ SF})$$

$$n = \frac{105 \times 10^3 \times 1}{8.31 \times (273 + 20.0)}$$

(b) Use of $m = \frac{\rho V}{nN_A}$ OR $m = \rho V$ OR use of $m_{\text{molecule}} = \frac{m_{\text{gas}}}{N_A}$ OR $N = nN_A$ OR $(c_{\text{rms}})^2 = \frac{3p}{\rho}$ seen in any form

OR use of their mass with $pV = \frac{1}{3}Nm(c_{\text{rms}})^2$ OR use of $\frac{1}{2}m(c_{\text{rms}})^2 = \frac{3}{2}kT$ \checkmark_1 Correct answer see table \checkmark_2

Correct SF see table √₃

n	√ ₂ c _{rms} /m s ⁻¹	√₃ SF
Without n	500-503	3 SF (501-503)
<i>n</i> more than 3SF	500-503	3 SF (501-503)
43.1	500-503	3 SF (501-503)
43	500-503	2 SF (500)
40 (no evidence of <i>n</i> = 43 in part (a))	482-484 or 500	2 or 1 SF (480 or 500)
40 (evidence of <i>n</i> = 43 in part part (a))	482-484 or 500	1 SF (500)

Allow ecf for incorrect T and/or n in part (a)
Several approaches are possible

Several approaches are possible
$$m = \frac{pV}{nN_A} = \frac{1.25 \times 1.00}{43.1 \times 6.02 \times 10^{28}} = 4.82 \times 10^{-26}$$
 (5.1 × 10⁻²⁶ if 40 used)

$$c_{\text{rms}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 293}{4.82 \times 10^{-26}}} = 502$$

OR

$$pV = \frac{1}{3}Nm(c_{\text{rms}})^{2} \qquad p\frac{Nm}{\rho} = \frac{1}{3}Nm(c_{\text{rms}})^{2}$$
$$(c_{\text{rms}})^{2} = \frac{3p}{\rho} \left(= \frac{3pV}{Nm} = \frac{3p\times 1}{\rho} \right)$$
$$c_{\text{rms}} = \sqrt{\frac{3\times 105\times 10^{3}}{1.25}} = 502$$

(c) $T = 4 \times 293$ or 4 times the starting temperature in $K \checkmark$

change in temperature = 879 (K) ✓ (correct answer gains both marks)

Alternative

$$T = \frac{m(2c_{\rm rms})^2}{3k}$$
 correctly calculated for their m , $c_{\rm rms}$ \checkmark

mp1 Using
$$\frac{1}{2}m(c_{\text{ms}})^2 = \frac{3}{2}kT$$
 so $(c_{\text{ms}})^2 \propto T$
 $\frac{(c_{\text{ms}})^2}{293} = \frac{(2 \times c_{\text{ms}})^2}{T}$
 $T = 293 \times 4 = 1172 \text{ K}$

mp2 change in temperature = 1172 - 293 = 879 K

Allow answer that rounds to 880 (K)

If no other marks awarded award max 1 when T is 4 times original and $\Delta\theta$ = 60

(d) Max 2 from: ✓✓

- Calculation of mass of water condensed in one hour $1.25 \times 960 \times (0.0057 0.0037) = 2.4 \text{ (kg)}$
- use of their mass with $mc\Delta\theta$ (expect 4.5 × 10⁴ (J))
- use of their mass with mL (expect 5.5(2) × 10⁶ (J))

heat energy removed = 5.6 × 10⁶ (J) ✓

Q7.

(a) Max 2 **√**√

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{27.3 \times 24 \times 60 \times 60} = 2.664 \times 10^{-6} \text{ (rad s}^{-1}\text{)}$$

$$v = \frac{2\pi r}{T} = \frac{2\pi \times 4.489 \times 10^8}{27.3 \times 24 \times 60 \times 60} = 1196 \text{ (m s}^{-1}\text{)}$$

Substitution or value

• Idea (resultant) gravitational field strength is equal to centripetal acceleration e.g.

$$g_R = a \text{ or } g_R = rw^2 \text{ or } g_R = \frac{v^2}{r} (= 3.19 \times 10^{-3} \text{ m s}^{-2})$$

• Idea that $g_M = g_R - g_E$

MP1 may be part of MP2

Ignore PoT, rounding errors and minor copy errors for MP1 and MP2

A substitution into $T^2 = \frac{4\pi^2 r^3}{GM}$ or equivalent is not accepted for the first bullet.

In the second bullet point do not allow g_m MP3 must follow from correct working

 $1.21 \times 10^{-3} \ge 3$ SF from correct working **√** (N kg⁻¹)

3

(b)
$$r = \sqrt{\frac{GM}{g_{\rm M}}} = \sqrt{\frac{6.67 \times 10^{-11} \times 7.35 \times 10^{22}}{1.21 \times 10^{-3}}} \checkmark$$

Allow ecf from part (a)

$$6.37 \times 10^7 \, (m) \, \checkmark$$

Allow
$$6.38 \times 10^7$$
 or 6.39×10^7 or 6.4×10^7 (m)

[5]

Q8.

(a) Determination of focal length of objective

OR adds their f_0 and f_e \checkmark

$$f_o = M \times f_e = 75 \times 0.022 = 1.65 (m)$$

1.67 (m) CAO 🗸

No sf penalty

Condone 2 sf 1.7

(b) Determination of angle subtended by Jupiter at unaided eye

OR uses:

distance to Jupiter = diameter of Jupiter \div angle subtended with their diameter OR their angle \checkmark

E.g.

$$1.7 \times 10^{-2} / 75 = 2.3 \times 10^{-4}$$
 (rad)

$$2 \times 7.0 \times 10^{4}/2.3 \times 10^{-4}$$

In MP1 allow use of trig and angle in degrees or radians. Condone use of 1.7×10^{-2} degrees.

distance = 6.2 × 108 (km) ✓ CAO

Do not award MP1 if both angle and diameter are incorrect.

Q9.

(a) Determines *s* and *r* in consistent units OR

Uses
$$A = 2 \times \text{parallax angle} = 2 \times (1 \div \frac{79}{3.26})$$

eg for MP1

- $s = 2 \times 1.5 \times 10^{11} \text{ m}; r = 79 \times 9.46 \times 10^{15} \text{ m}$
- $s = 2 \div 2.06 \times 10^5 \, pc; r = 79 \div 3.26 \, pc$
- tan (A/2) = orbital radius ÷ distance to star with consistent units

 $A = 4.0 \times 10^{-7} \, rad = 2.3 \times 10^{-5} \, degrees$

Evidence for MP1 can be seen in the figure.

2.3 × 10⁻⁵ degrees CAO ✓

2

(b) Use of $m - M = 5 \log (d/10)$ with two correctly substituted from m, M or d

If no other mark given, award 1 mark for recognition that 0.40 pc is a lot less than the distance to nearest known star and therefore determination must be incorrect.

For MP2 expect to see

Obtains correct value of *m*, *M* or *d* ₂**√**

 $d = 2.3 \, pc \, OR \, m = 9.7 \, OR \, M = 20.5$

Alternative for MP1 and MP2

using m, M and d in m - M = 5 log (d/10) $_{1}\checkmark$

seeing -3.2 for LHS and -7.0 for RHS 2√

Compares their value with value given in question 3

MP3 and MP4 cannot be awarded without a comparison of the distances.

Makes comment about significance of difference between **their** values related to the distance AND some idea of whether the astronomer's suggestion is valid consistent with their values.₄✓

MP4 is for a recognition of the large difference between their calculated value and value given in question eg by proportion, >>, 6 x bigger, significantly bigger etc.

If a difference is calculated in MP3, for MP4 to be awarded the difference must compared to one of the distances.

Q10.

(a) Use of $\lambda_{max}T$ = constant to determine their λ_{max} , their T or their constant \checkmark Throughout the answer:

Allow 0.47 to 0.49 μm for λ_{max} from the graph

Comparison with λ_{max} = 0.48 × 10⁻⁶ (m) OR T = 6.0(4) × 10⁻³ (K) OR constant = 0.0029 m K

AND conclusion that the graph is consistent. ✓

Allow 6.17×10^3 to 5.92×10^3 (K) for their calculated T

Allow 2.82×10^{-3} to 2.94×10^{-3} (m K) for their calculated constant.

(b) Using $P = \sigma A T^4$ to give $P = 5.67 \times 10^{-8} \times 4\pi \times (9.6 \times 10^6)^2 \times 6000^4 \checkmark$

In MP1 condone one error from

- missing the 4
- missing the π
- doubling the radius and using it as r in an area calculation
- POT errors

Condone σ for 5.67 × 10-8

8.5 × 10²² (W) ✓

Allow full credit for use of their T from part (a)

eg $T = 6.04 \times 10^3$ (K) gives 8.75×10^{22} (W)

2

Q11.

(a) Idea that Hubble's Law is used to estimate the age of the Universe. ✓

Allow determination of H-1 or H for the values in the question.

Accept idea that age is related to gradient of graph of v against d.

So no, as Andromeda is approaching / is blue-shifted
Allow ";Hubble's Law is only used with
receding/redshifted galaxies."

(b) Calculates mass of black hole = $1.60 \times 10^8 \times 1.99 \times 10^{30} \text{ } \text{1}$ Correct answer gets $_1\sqrt{_2}\sqrt{_3}$ Correct answer with correct unit gets $_1\sqrt{_2}\sqrt{_3}\sqrt{_3}$

Use of
$$R_{5} = \frac{2 \times 6.67 \times 10^{-11} \times \text{ their mass of black hole}}{(3 \times 10^{8})^{2}} 2^{\checkmark}$$

$$= 4.7 \times 10^{11} \text{ m }_{3} \checkmark$$
Also accept
$$4.7 \times 10^{8} \text{ km}$$

$$3.1 \text{ AU}$$

$$1.5 \times 10^{-5} \text{ pc}$$

 $5.0 \times 10^{-5} \text{ IV}$

Unit mark is based on correct calculation.

3

Q12.

- (a) MAX 4 from:
 - Attempts to find area of large loop
 - Subtracts area of small loop
 - Shows suitable scaling factor
 - Uses 4 cycles s⁻¹
 - correctly calculates indicated power using their values.

592 W **√** (cao)

```
eg counting small squares

157 - 9 squares = 148 squares

scaling factor of 0.10 \times 10^{-3} \times 0.1 \times 10^{5} = 1.0 J per

square

148 J × 1.0 = 148 J

If counting 'large' squares:

(6.5 - 0.5) squares × 0.50 × 10<sup>-3</sup> × 0.50 × 10<sup>5</sup>

gives 150 J

Accept approximating to triangles

cycles s^{-1} = 4 (as it is double acting at 2 rev s^{-1})

indicated power = 148 × 4 = 592 W ± 30 W
```

(b) Input power = $6.44 \times 10^{-4} \times 18.0 \times 10^{6} = 11.6 \times 10^{3} \text{ W}$ Output power = $T\omega = 39.0 \times 2 \times 2\pi = 490 \text{ W}$

> Correct answers only Accept 1.2 × 10⁴ W or 12000W Condone working not shown provided answers are correct.

Q13.

(a) Either conversion of 1 MeV to J or W = QV

$$1.60 \times 10^{-19} \times 1.30 \times 10^{6} = 2.08 \times 10^{-13} \checkmark (J)$$
At least 2 sf required.

(b) $Q = mc\Delta\theta = 1.5 \times 903 \times 68.0 (= 92\ 106\ J)$ **OR**

$$E_{\rm K}$$
 of one electron = $\frac{92\,106}{4.50\times10^{17}}$ \checkmark (= 2.05 × 10⁻¹³ J)

Both calculations and correct conclusion, eg

Yes, this is consistent with an accelerating voltage of 1.30 MV. ✓

Alternative route

Total E_K for all electrons =

$$2.08 \times 10^{-13} \times 4.50 \times 10^{17} = (93\ 600\ J)\ OR$$

$$\Delta\theta = \frac{Q}{mc} = \frac{93600}{1.5 \times 903} \checkmark (= 69.1 \text{ K})$$

which is consistent with the temperature rise observed. \checkmark

Can also compare total E_K with $mc\Delta\theta$ for MP2.

Use of 2.0 × 10¹³ gives total E_K of 90 000 J and $\Delta\theta$ of 66 K which is consistent.

Allow comparison of in eV or accelerating pd (1.28 × 106) with 1.3 × 106 V or MeV with MV.

(c) Correct calculation of non-relativistic $E_K \checkmark_a$

Statement or attempted use of $E_K = mc^2 - m_0c^2 \checkmark_b$

Correct calculation of relativistic E_K ✓_c

Both calculations and comparison of with 2.1 × 10^{-13} or 2.0×10^{-13} J to conclusion consistent with idea that student B is correct \checkmark_d

$$E_{\rm K} = \frac{1}{2} m v^2 = 3.78 \times 10^{-14} \,\text{J}$$

 $E = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} - m_0 c^2 = 2.11 \times 10^{-13} \,\text{J}$

For \checkmark_d allow a comparison of $\Delta\theta$ from

$$m_{A/C}\Delta\theta = N(mc^2 - m_0c^2)$$
 with 68°

Allow ecf for \sqrt{d} for minor calculation error, rounding error or transcription errors but there must be a relativistic KE and non-relativistic calculation to award \sqrt{d} .

Alternative

Calculation of speed using $v = \sqrt{\frac{2E_k}{m}} \checkmark_a$

Statement or attempted use of $E_K = mc^2 - m_0c^2 \checkmark_b$

Calculation of speed from relativistic equation √c

Both calculations and comparison of results with 2.88 × 10⁸ or 3 × 10⁸ √_d

$$v = 6.8 \times 10^8 \text{ m s}^{-1} \text{ if using } 2.08 \times 10^{-13}$$

 $v = 2.88 \times 10^8 \text{ m s}^{-1} \text{ if using } 2.08 \times 10^{-13}$

Allow calculations based on the total number of electrons and comparison with **part** (b).

Alternative for Max 2

Correct calculation of non-relativistic E_K √a

Calculation of relativistic mass, total energy or $\sqrt{1-v^2/c^2}$ or $\sqrt{1-\frac{v^2}{c^2}}$ AND comment that relativistic effects are significant (owtte) so B is correct. \checkmark

If no other marks awarded max 1 for student B is correct because speed is greater than 3.0×10^7 m s⁻¹ or v is 96% of c (which is greater than 10%).

[8]

Q14.

(a) (Use of volume (per sec) =)
$$\frac{\pi d^2}{4} \times 17.2 \,\text{\checkmark}$$

(Volume per second =) 19.45 (m³ s⁻¹) = $\frac{774\pi}{125}$
 $\frac{\pi d^2}{4} \times 17.2 = \frac{9\pi}{25} \times 17.2$

Use of
$$\rho = \frac{m}{V} \checkmark$$

Substitutes their volume (per second) and density where $\frac{m}{t}$ would be subject. Do not award MP2 if 2 errors are made in substitution.

(mass per second =) 0.389 (kg s⁻¹) ✓

Answer seen to at least 2 sf.

Calculator display = 0.3890548342

(b) Use of $F = \frac{m}{t} \times v$ or (F =) 6.69 N or 6.708 (N) or 6.88 (N)

OR

Use of W=mg

OR statement:

Upward force = weight ✓

Possible ECF from (a) where their m rounds to 0.4 kg.

W = 3.72m seen or 3.72m as the subject of a force equation.

Do not allow 3.72×0.4 as use of W=mg

Applies condition for equilibrium by setting F = mg

OR

$$6.69 = 3.72 \text{ m or } 6.708 = 3.72 \text{ m or } 6.88 = 3.72 \text{ m}$$

$$(m =) 1.80 (kg) \checkmark$$

Accept answer correctly rounded to at least 2 sf.

F= 6.88 N where
$$\frac{m}{t}$$
 = 0.4 m=1.85 kg or 1.8 kg

(c) Use of E = Pt

OR

converts kWh to J ✓

Alternative MP1 converts to any of the following units of energy.

- 0.34 (kW) x 0.0108 (h) **or** 0.00368 (kWh)
- $0.035 \, kWh = 35 \, (Wh)$
- 340(W) $\times \frac{13}{1200}$ (h) **or** $\frac{221}{60}$ (Wh) or 3.683 (Wh)

Or equivalent e.g W mins

Do not accept incorrect unit.

Do not accept incorrect subject.

MP2

Do not allow answers obtained using incorrect power $(\frac{126000}{39})$

(=) 11% **✓**

Accept answer correctly rounded to at least 2 sf. Calculator display = 10.5238

(d) Incorrect:

- this will increase weight OR helicopter must provide a greater lift OR (more mass therefore) greater GPE (for same height) OR (more mass therefore) greater KE (for same speed) OR idea that more energy is required. ✓
- the helicopter must displace more (atmospheric) gas (every second to produce greater lift force) **OR** blades must spin faster**√**
- the helicopter must do more work every second (so will transfer stored energy at a greater rate) OR the helicopter needs more power to fly√

OR

Incorrect:

- this will increase weight ✓
- atmosphere is too thin and can't displace sufficient mass of gas per second OR blades can't spin fast enough√
- can't get off ground due to insufficient lift force ✓

Do not accept increase in resistive forces or increase in drag for increase in weight.

Must state that it is incorrect for all 3 marks.

Maximum of 2 marks for suggestions that more than doubles flight time.

Accept lift or thrust or upward force.

A maximum of 1 mark for **MP3** and **MP1** where only mark seen is : idea that more energy is required.

MP2 can be scored independent of this.

3

(e) Use of an appropriate equation of motion:

$$v = u + at \checkmark$$

By correct substitution including signs **or** correct rearrangement to make t subject.

$$(t =) 0.15 (s) \checkmark$$

Accept answer correctly rounded to at least 2 sf. Calculator display = 0.14784946236559

2

(f) Use of $v^2 = u^2 + 2as$

OR

Use of
$$v = u + at$$
 and $s = ut + \frac{1}{2}at^2$ **ECF**

OR

$$mg\Delta h = \frac{1}{2}mv^2 - \frac{1}{2}mu^2 \checkmark$$

$$(h =) 0.61 (m) \checkmark ECF$$

MP1 (Downward journey) Allow s = 0.65m

$$2.2^2 = 0^2 + 2 \times 3.72 \times s$$

OR

2.2 = 0 +3.72 t and s = 0 +
$$\frac{1}{2}$$
 3.72 t² ECF

OR

$$m \times 3.72 \, \Delta h = \frac{1}{2} \, m2.2^2$$

MP1 (Upward journey)

Allow s=0.041 m obtained from

$$s = 0.55 \times 0.15 - \frac{1}{2} 3.72 \times 0.15^2$$
 ECF

OR

 $0^2 = 0.55^2 - 2 \times 3.72 \times s$

Check possible **ECF** for t from (e) used in calculation.

Condone sign suppression in **MP1** where answer of 0.65 m or 0.041 m or 0.6(1) m is seen.

Accept answer correctly rounded to at least 2 sf.

Calculator display = 0.60987903225806

2

[15]

1

1

1

Q15.

(a) callipers may **reduce** the (reading of the) diameter ✓

treat 'change reading' / 'give incorrect reading' as neutral;

accept the idea that the callipers may 'distort' / 'deform' / 'push in' the putty, eg

'change the shape' / 'crush' / 'squash' / 'cut into' / 'squeeze'

reject implication that density could change, eg 'volume will change' / 'will compress';

reject 'putty will move' / 'not able to grip the putty hard enough'

(b) average d

OR

uncertainty in *d* ₁**√**

percentage uncertainty ≥ 3 sf 2 ✓

answers to >3sf rounding to 2.37(%) earns both marks

for $_{1}\sqrt{}$ either average = 33.8(0) (mm) OR uncertainty from half range = 0.8(0) (mm); allow $1/2 \times (34.5-32.9)$ seen in working; credit if seen in a percentage uncertainty calculation

percentage uncertainty 2.37(%) 2√

for 2√ percentage uncertainty to > 3 sf; reject decimal answer or incorrect rounding to 2.36%;

reject answers if either 32.9 or 34.5 are (wrongly) rejected as anomalous (leading to 1.62% and 1.64% respectively)

(c) % uncertainty in length correct ₁✓

for ₁√ minimum 2sf CAO; 2.8(2)%

calculates % uncertainty in volume 2√

for $_2\checkmark\%$ uncertainty in $V=2\times$ their % uncertainty in d + their % uncertainty in L; allow 2.4% for % uncertainty in d minimum 2 sf; expect 7.6 %

1

1

1

1

evidence for volume evaluated

OR

evidence for Δ volume evaluated $3\checkmark$

for ₃ ✓ accept answers including:

sub of **all data** in to $V = \frac{\pi \times (\text{their} d)^2 \times L}{4}$ OR

sub of all data in to

$$\Delta V = \frac{\pi \times (\text{theird})^2 \times L}{4} \times \text{their \% uncertainty}$$

 $/\Delta V$ = their volume × their % uncertainty

OR

recognisable ΔV with POT error

 Δ volume between 4.8 and 4.9 × 10³ (mm³) ₄ \checkmark

answers that round to 4.8 or round to 4.9 are acceptable;

34 ✓ for △ volume in range and correct POT

(d) <u>ruled</u> line ₁✓

for ₁√ line passing below 5th AND above 4th ie no overlap between line and either +;

line passing through or extrapolated to (0, 0) to half a minor grid square;

withhold this mark if line is poorly-marked (if doing so annotate clip to explain)

gradient calculated 2

for $_2\checkmark$ gradient calculated from ΔR divided by ΔL^2 ; minimum ΔL^2 = 25 (×10⁻³ m²);

allow read-off errors in calculation / allow missing or incorrect POT

 ρ in range 3.72 to 3.84 (× 10⁻²) $_3$

for ₃ ✓ accept 2 sf 3.8

POT and unit correct ₄√

for $_4\surd$ treat 3.78 × 10 $^{-2}$ and 0.0378 \varOmega m as equally acceptable;

allow alternative valid answer, eg 37.8 Ω mm

[11]